29 research outputs found

    Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Get PDF
    Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome) in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H) system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77) out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs). These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins), range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide processing, cell cycle progression, transcriptional regulation, and signal transduction networks. Conclusions Our network analysis of proteases from P. falciparum uses a so-called guilt-by-association approach to extract sets of proteins from the proteome that are candidates for further study. Novel protease targets and previously unrecognized members of the protease-associated sub-systems provide new insights into the mechanisms underlying parasitism, pathogenesis and virulence.</p

    Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins

    Full text link
    Background Species of the family Vibrionaceae are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges. Results We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in V. cholerae were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two V. cholerae strains examined. Conclusions The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the Vibrionaceae is widespread and that this exchange aids these species in adapting to their environments

    Comparative genomics of the family Vibrionaceae reveals the wide distribution of genes encoding virulence-associated proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Species of the family <it>Vibrionaceae </it>are ubiquitous in marine environments. Several of these species are important pathogens of humans and marine species. Evidence indicates that genetic exchange plays an important role in the emergence of new pathogenic strains within this family. Data from the sequenced genomes of strains in this family could show how the genes encoded by all these strains, known as the pangenome, are distributed. Information about the core, accessory and panproteome of this family can show how, for example, genes encoding virulence-associated proteins are distributed and help us understand how virulence emerges.</p> <p>Results</p> <p>We deduced the complete set of orthologs for eleven strains from this family. The core proteome consists of 1,882 orthologous groups, which is 28% of the 6,629 orthologous groups in this family. There were 4,411 accessory orthologous groups (i.e., proteins that occurred in from 2 to 10 proteomes) and 5,584 unique proteins (encoded once on only one of the eleven genomes). Proteins that have been associated with virulence in <it>V. cholerae </it>were widely distributed across the eleven genomes, but the majority was found only on the genomes of the two <it>V. cholerae </it>strains examined.</p> <p>Conclusions</p> <p>The proteomes are reflective of the differing evolutionary trajectories followed by different strains to similar phenotypes. The composition of the proteomes supports the notion that genetic exchange among species of the <it>Vibrionaceae </it>is widespread and that this exchange aids these species in adapting to their environments.</p

    Module-based subnetwork alignments reveal novel transcriptional regulators in malaria parasite Plasmodium falciparum

    Get PDF
    Background Malaria causes over one million deaths annually, posing an enormous health and economic burden in endemic regions. The completion of genome sequencing of the causative agents, a group of parasites in the genus Plasmodium, revealed potential drug and vaccine candidates. However, genomics-driven target discovery has been significantly hampered by our limited knowledge of the cellular networks associated with parasite development and pathogenesis. In this paper, we propose an approach based on aligning neighborhood PPI subnetworks across species to identify network components in the malaria parasite P. falciparum. Results Instead of only relying on sequence similarities to detect functional orthologs, our approach measures the conservation between the neighborhood subnetworks in protein-protein interaction (PPI) networks in two species, P. falciparum and E. coli. 1,082 P. falciparum proteins were predicted as functional orthologs of known transcriptional regulators in the E. coli network, including general transcriptional regulators, parasite-specific transcriptional regulators in the ApiAP2 protein family, and other potential regulatory proteins. They are implicated in a variety of cellular processes involving chromatin remodeling, genome integrity, secretion, invasion, protein processing, and metabolism. Conclusions In this proof-of-concept study, we demonstrate that a subnetwork alignment approach can reveal previously uncharacterized members of the subnetworks, which opens new opportunities to identify potential therapeutic targets and provide new insights into parasite biology, pathogenesis and virulence. This approach can be extended to other systems, especially those with poor genome annotation and a paucity of knowledge about cellular networks

    Genomic and systems evolution in Vibrionaceae species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The steadily increasing number of prokaryotic genomes has accelerated the study of genome evolution; in particular, the availability of sets of genomes from closely related bacteria has facilitated the exploration of the mechanisms underlying genome plasticity. The family <it>Vibrionaceae </it>is found in the <it>Gammaproteobacteria </it>and is abundant in aquatic environments. Taxa from the family <it>Vibrionaceae </it>are diversified in their life styles; some species are free living, others are symbiotic, and others are human pathogens. This diversity makes this family a useful set of model organisms for studying bacterial evolution. This evolution is driven by several forces, among them gene duplication and lateral gene transfer, which are believed to provide raw material for functional redundancy and novelty. The resultant gene copy increase in one genome is then detected as lineage-specific expansion (LSE).</p> <p>Results</p> <p>Here we present the results of a detailed comparison of the genomes of eleven <it>Vibrionaceae </it>strains that have distinct life styles and distinct phenotypes. The core genome shared by all eleven strains is composed of 1,882 genes, which make up about 31%–50% of the genome repertoire. We further investigated the distribution and features of genes that have been specifically expanded in one unique lineage of the eleven strains. Abundant duplicate genes have been identified in the eleven <it>Vibrionaceae </it>strains, with 1–11% of the whole genomes composed lineage specific radiations. These LSEs occurred in two distinct patterns: the first type yields one or more copies of a single gene; we call this a single gene expansion. The second pattern has a high evolutionary impact, as the expansion involves two or more gene copies in a block, with the duplicated block located next to the original block (a contiguous block expansion) or at some distance from the original block (a discontiguous block expansion). We showed that LSEs involve genes that are tied to defense and pathogenesis mechanisms as well as in the fundamental life cycle of <it>Vibrionaceae </it>species.</p> <p>Conclusion</p> <p>Our results provide evidence of genome plasticity and rapid evolution within the family <it>Vibrionaceae</it>. The comparisons point to sources of genomic variation and candidates for lineage-specific adaptations of each <it>Vibrionaceae </it>pathogen or nonpathogen strain. Such lineage specific expansions could reveal components in bacterial systems that, by their enhanced genetic variability, can be tied to responses to environmental challenges, interesting phenotypes, or adaptive pathogenic responses to host challenges.</p

    A novel subnetwork alignment approach predicts new components of the cell cycle regulatory apparatus in Plasmodium falciparum

    Get PDF
    Background According to the World Health organization, half the world\u27s population is at risk of contracting malaria. They estimated that in 2010 there were 219 million cases of malaria, resulting in 660,000 deaths and an enormous economic burden on the countries where malaria is endemic. The adoption of various high-throughput genomics-based techniques by malaria researchers has meant that new avenues to the study of this disease are being explored and new targets for controlling the disease are being developed. Here, we apply a novel neighborhood subnetwork alignment approach to identify the interacting elements that help regulate the cell cycle of the malaria parasite Plasmodium falciparum. Results Our novel subnetwork alignment approach was used to compare networks in Escherichia coli and P. falciparum. Some 574 P. falciparum proteins were revealed as functional orthologs of known cell cycle proteins in E. coli. Over one third of these predicted functional orthologs were annotated as conserved Plasmodium proteins or putative uncharacterized proteins of unknown function. The predicted functionalities included cyclins, kinases, surface antigens, transcriptional regulators and various functions related to DNA replication, repair and cell division. Conclusions The results of our analysis demonstrate the power of our subnetwork alignment approach to assign functionality to previously unannotated proteins. Here, the focus was on proteins involved in cell cycle regulation. These proteins are involved in the control of diverse aspects of the parasite lifecycle and of important aspects of pathogenesis

    A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities

    Get PDF
    © The Authors, 2007. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 2 (2007): e667, doi:10.1371/journal.pone.0000667.For decades it has been recognized that neutrophilic Fe-oxidizing bacteria (FeOB) are associated with hydrothermal venting of Fe(II)-rich fluids associated with seamounts in the world's oceans. The evidence was based almost entirely on the mineralogical remains of the microbes, which themselves had neither been brought into culture or been assigned to a specific phylogenetic clade. We have used both cultivation and cultivation-independent techniques to study Fe-rich microbial mats associated with hydrothermal venting at Loihi Seamount, a submarine volcano. Using gradient enrichment techniques, two iron-oxidizing bacteria, strains PV-1 and JV-1, were isolated. Chemolithotrophic growth was observed under microaerobic conditions; Fe(II) and Fe0 were the only energy sources that supported growth. Both strains produced filamentous stalk-like structures composed of multiple nanometer sized fibrils of Fe-oxyhydroxide. These were consistent with mineralogical structures found in the iron mats. Phylogenetic analysis of the small subunit (SSU) rRNA gene demonstrated that strains PV-1 and JV-1 were identical and formed a monophyletic group deeply rooted within the Proteobacteria. The most similar sequence (85.3% similarity) from a cultivated isolate came from Methylophaga marina. Phylogenetic analysis of the RecA and GyrB protein sequences confirmed that these strains are distantly related to other members of the Proteobacteria. A cultivation-independent analysis of the SSU rRNA gene by terminal-restriction fragment (T-RF) profiling showed that this phylotype was most common in a variety of microbial mats collected at different times and locations at Loihi. On the basis of phylogenetic and physiological data, it is proposed that isolate PV-1T ( = 1ATCC BAA-1019: JCM 14766) represents the type strain of a novel species in a new genus, Mariprofundus ferrooxydans gen. nov., sp. nov. Furthermore, the strain is the first cultured representative of a new candidatus class of the Proteobacteria that is widely distributed in deep-sea environments, Candidatus ζ (zeta)-Proteobacteria cl. nov.Funding was provided to DE and CLM by the National Science Foundation (0348330) and to DE through the NASA Astobiology Institute

    Predicting and exploring network components involved in pathogenesis in the malaria parasite via novel subnetwork alignments

    Get PDF
    Background Malaria is a major health threat, affecting over 40% of the world\u27s population. The latest report released by the World Health Organization estimated about 207 million cases of malaria infection, and about 627,000 deaths in 2012 alone. During the past decade, new therapeutic targets have been identified and are at various stages of characterization, thanks to the emerging omics-based technologies. However, the mechanism of malaria pathogenesis remains largely unknown. In this paper, we employ a novel neighborhood subnetwork alignment approach to identify network components that are potentially involved in pathogenesis. Results Our module-based subnetwork alignment approach identified 24 functional homologs of pathogenesis-related proteins in the malaria parasite P. falciparum, using the protein-protein interaction networks in Escherichia coli as references. Eighteen out of these 24 proteins are associated with 418 other proteins that are related to DNA replication, transcriptional regulation, translation, signaling, metabolism, cell cycle regulation, as well as cytoadherence and entry to the host. Conclusions The subnetwork alignments and subsequent protein-protein association network mining predicted a group of malarial proteins that may be involved in parasite development and parasite-host interaction, opening a new systems-level view of parasite pathogenesis and virulence

    Genomic encyclopedia of bacterial and archaeal type strains, phase III : the genomes of soil and plant-associated and newly described type strains

    Get PDF
    The Genomic Encyclopedia of Bacteria and Archaea (GEBA) project was launched by the JGI in 2007 as a pilot project to sequence about 250 bacterial and archaeal genomes of elevated phylogenetic diversity. Herein, we propose to extend this approach to type strains of prokaryotes associated with soil or plants and their close relatives as well as type strains from newly described species. Understanding the microbiology of soil and plants is critical to many DOE mission areas, such as biofuel production from biomass, biogeochemistry, and carbon cycling. We are also targeting type strains of novel species while they are being described. Since 2006, about 630 new species have been described per year, many of which are closely aligned to DOE areas of interest in soil, agriculture, degradation of pollutants, biofuel production, biogeochemical transformation, and biodiversity

    Phobos LIFE (Living Interplanetary Flight Experiment)

    Get PDF
    The Planetary Society's Phobos Living Interplanetary Flight Experiment (Phobos LIFE) flew in the sample return capsule of the Russian Federal Space Agency's Phobos Grunt mission and was to have been a test of one aspect of the hypothesis that life can move between nearby planets within ejected rocks. Although the Phobos Grunt mission failed, we present here the scientific and engineering design and motivation of the Phobos LIFE experiment to assist with the scientific and engineering design of similar future experiments. Phobos LIFE flew selected organisms in a simulated meteoroid. The 34-month voyage would have been the first such test to occur in the high-radiation environment outside the protection of Earth's magnetosphere for more than a few days. The patented Phobos LIFE “biomodule” is an 88 g cylinder consisting of a titanium outer shell, several types of redundant seals, and 31 individual Delrin sample containers. Phobos LIFE contained 10 different organisms, representing all three domains of life, and one soil sample. The organisms are all very well characterized, most with sequenced genomes. Most are extremophiles, and most have flown in low Earth orbit. Upon return from space, the health and characteristics of organisms were to have been compared with controls that remained on Earth and have not yet been opened
    corecore